

dotNet Protector
Quick Start Guide

File Menu

New
Create a new project file

Open
Open an existing project file

Save Project
Save the current project

Save Project As
Saves a copy of the current project

Tools Menu

Build project
Launch protection with the current project parameters.

Activate dotNet Protector
Launch dotNet Protector activation wizard. After installation, dotNet Protector works in demonstration mode
(all generated assemblies will have a 5 days execution limit).
If you acquired a licence for dotNet Protector, you will have to activate it (see the Activation section).
The product key you will enter during activation will determine available features (dotNet Protector Edition :
Classic, Professional or Advanced).

Import /Export License File
Allows to save / restore your licence file If you must reinstall your computer, save your licence file before un-
installation; you will then be able to re-import and avoid activating once again. This option will work only if the
material on which the license is imported is the same one as that on which it was exported.
This option is also useful if you chose the USB Key activation. You can then export to import your license file
after activation, and import it on all the computers where you wish to run dotNet Protector (dotNet Protector
will run only if the activated key USB is present).
This option is valid also for the ‘instant activation’ mode. In this mode, a license token is requested from each
run of dotNet Protector. This token is associated with the computer that requested it. Computer-token
association is deleted every 24h, which enables you to change computer each day. You must have access
to Internet to run dotNet Protector in this mode.

Import Keyset
dotNet Protector activation process uses public/private key pairs and a symmetrical key. The key set
contains all these keys. If you do not use the activation features (hardware lock) the key set is not
fundamental. If on the contrary you activate this functionality, you must make sure that your program is
protected with the same key set as your tool that delivers the licenses. The key set determines the encoding
of product keys, configuration strings and license keys. It guarantees to you that one will not be able to
generate product keys licenses, unless one has your private keys. Of course, the protected program only
embeds the public keys. A key set is generated during the first dotNet Protector run. The generation of this
key set relies on a cryptographic random generator to have the best uniqueness garantee.

Export Keyset
Allows you to save your key set.

Project Tab

Project Type
Allows choosing the type of assembly to protect (Windows EXE, Windows DLL - or ASP.Net, SQL 2005)

Assembly to protected
Chose your assembly using the Browse button

Strong name
If your assembly is signed, you must select the snk file to resign it after protection

Output window
Protection progress will show up in this window

Protection Tab

Use advanced protection (IL obfuscation)
Activate protection by methods encryption

Obfuscate names
Activate the ‘traditional’ obfuscation

Obfuscate public names
For Exe only, allows to obfuscate all the names.

Demo Limit
Sets the execution limit of your program (demonstration). The limit starts the date you generate the
protected assembly and not it’s installation date. Note: when dotNet Protector runs in demo mode, your
assembly will be limited to 5 days anyway.

Run-time Limit
Sets the run-time limit of your program (Exe only). The process will be killed when this period expires.

Limited execution Mode
Sets what will happen when the demo period expires (if no license can be granted)
Throw ApplicationException (default) : an ApplicationException will be thrown, killing the process.
Load Assembly by name : this allows you to tell an alternate assembly to load. You’ll be invited to browse
an assembly to run, then its full name will be recorded in the protected assembly. It is highly recommended
to select a strong name assembly.
Load embedded Assembly : you’ll have to browse for the alternate assembly to run; this assembly will be
embedded in the final executable.

Hardware Lock Tab

Enable Hardware Lock
If this box is checked, you’ll have to generate a license to run your program (Activation)

Component activation mode (Dll only)
Activate to run always : a license is required to run your component.
Activate to reference : a license is required to reference your component in another program. No license is
required at runtime.

Activate to reference and run ASP.Net : a license is required to reference your component in a Windows
application. A runtime license is required to run in ASP.Net

Embedding Tab (EXE only)

Add : allows to add an assembly (a referenced Dll) into the final executable.
Add Dep : adds all referenced assemblies that are present on the same location as the main assembly.
Remove : removes an embedded Dll from the list.
Auto add dependencies at build time : when dotNet Protector builds the project, it looks for referenced
assemblies and adds all of them that are present in the same location as the main assembly. This option
gives you no control on which assemblies are embedded or not. It is better to add referenced assembly in
the project than to check this box.

Generate Tab

Destination directory
Let you select the output location. If you decide to embed dotNet Protector’s runtime (EXE project) additional
directory will be created to separate different processor architectures (x86, amd64, Itanium).

Merge runtime with executable
Lets you build an EXE without dotNet Protector’s runtime dependency. The generated exe is then a mixed
(native + managed) exe embedding the runtime. If your program is a v1.1 assembly, it will be converted to v2
to embed the runtime, which can cause som compatibility issues if your assembly can’t run on the v2.
When you select this option, your assembly is converted to an embedded netmodule. The final exe is then a
multi-modules mixed assembly. Don’t forget that Assembly.GetExecutingAssembly.ManifestModule will give
you dotNet Protector’s runtime module. Your assembly’s properties (name, version, assembly custom
attributes) will be transferred to the generated assembly, as well as manifest resources. Then,
GetManifestResourceStream should have the desired result.

Build Trace decoding informations
dotNet Protector strips all debug informations before protecting assembly. Original pdb files would be
incompatible with the protected assembly anyway. If pdb are available in the same location of an assembly
to protect, dotNet Protector can build a file allowing obfuscated StackTrace decoding.

Build Project button
Runs protection with current project parameters.

