
PvLog Signature Structure

1. Signature for dotNet Protector Runtime

A dotNet Protector Runtime image is either Authenticode signed or PvLog signed.

Authenticode signature is outside the scope of this document.

PvLog signed runtime images

File Offset Type Description

0x380 BYTE[] Watermark (dotNet Protector Runtime *PvLog*)

0x3A0 DWORD Offset from beginning of the file of the signed message

0x3A4 DWORD Size of signed message

Process for Generating the Pvlog dotNet Protector Runtime Image Hash
Generating the hash for a dotNet Protector image is similar to computing a PE Authenticode hash,
with the exception of the runtime watermark and the signature itself that should be omitted.
All data in sections of the PE image that are specified in the section table are hashed in their entirety
except for the following exclusion ranges:

 The file CheckSum field of the Windows-specific fields of the optional header. This
checksum includes the entire file (including any attribute certificates in the file). In all likelihood, the
checksum will be different than the original value after inserting the Authenticode signature.

 The Runtime watermark and message pointers (from file offset 0x380 to 0x3A7)

 Information related to attribute certificates. The areas of the PE image that are related to the
Authenticode signature are not included in the calculation of the Runtime image hash because
Authenticode signatures can be added to or removed from an image without affecting the overall
integrity of the image. PvLog Runtime Hash excludes the following information from the hash
calculation:

The Certificate Table field of the optional header data directories.

The Certificate Table and corresponding certificates that are pointed to by the Certificate
Table field listed immediately above.

To calculate the PE image hash, PvLogSigVerif orders the sections that are specified in the
section table by address range, then hashes the resulting sequence of bytes, passing over the
exclusion ranges.

 Information past of the end of the last section. The area past the last section (defined by
highest offset) is not hashed. This area commonly contains debug information. Debug information
can generally be considered advisory to debuggers; it does not affect the actual integrity of the
executable program. It is quite literally possible to remove debug information from an image after a
product has been delivered and not affect the functionality of the program. In fact, this is
sometimes done as a disk-saving measure. It is worth noting that debug information contained
within the specified sections of the PE Image cannot be removed without invaliding the PvLog
Runtime signature.

2. Signature for dotNet Protector protected assemblies

Like the non-authenticode runtime, protected assemblies have a watermark at file offset 0x380.

This watermark includes either a 64-bit publisher Id if licensed or 0 (64-bit) if protected by an
evaluation version. It also includes a 64-bit computer hash (the computer on which the program has
been protected).

In the case of an evaluation edition, altering the watermark or the signature will prevent the protected
assembly from initializing, thus from running.

The protected image is hashed using the strong name hashing algorithm and this hash is signed with
a key-pair whose public key is signed and time-stamped by PV Logiciels and embedded into the
protected assembly.

File Offset Type Description

0x380 BYTE[] Watermark (dotNet Protector)

0x390 QWORD Publisher Hash

0x398 QWORD Computer Hash

0x3A0 BYTE[256] Signed Hash (2048-bit)

0x4A0 BYTE[] Signed and time-stamped public key

Process for authenticating a protected assembly

Verify message signature and time-stamp

 Message should be signed by PV Logiciels / LA TESSOUALLE / FRANCE

Signer cert should be delivered by a trusted authority (currently Symantec class 3 SHA256

Code Signing CA)

Message should include a RFC3161 time-stamp token (1.2.840.113549.1.9.16.1.4)

countersigned by a trusted authority (currently COMODO)

Extract the public key (what has been signed)

Verify that the signed hash matches by computing a strong name hash on the file and verifying the
signature

